skip to main content


Search for: All records

Creators/Authors contains: "Narayan, Ramesh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Fueling and feedback couple supermassive black holes (SMBHs) to their host galaxies across many orders of magnitude in spatial and temporal scales, making this problem notoriously challenging to simulate. We use a multi-zone computational method based on the general relativistic magnetohydrodynamic (GRMHD) code KHARMA that allows us to span 7 orders of magnitude in spatial scale, to simulate accretion onto a non-spinning SMBH from an external medium with a Bondi radius ofRB≈ 2 × 105GM/c2, whereMis the SMBH mass. For the classic idealized Bondi problem, spherical gas accretion without magnetic fields, our simulation results agree very well with the general relativistic analytic solution. Meanwhile, when the accreting gas is magnetized, the SMBH magnetosphere becomes saturated with a strong magnetic field. The density profile varies as ∼r−1rather thanr−3/2and the accretion rateṀis consequently suppressed by over 2 orders of magnitude below the Bondi rateṀB. We find continuous energy feedback from the accretion flow to the external medium at a level of102Ṁc25×105ṀBc2. Energy transport across these widely disparate scales occurs via turbulent convection triggered by magnetic field reconnection near the SMBH. Thus, strong magnetic fields that accumulate on horizon scales transform the flow dynamics far from the SMBH and naturally explain observed extremely low accretion rates compared to the Bondi rate, as well as at least part of the energy feedback.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Abstract

    A spinning black hole (BH) accreting from a disk of strongly magnetized plasma via a magnetically arrested disk is known to produce an efficient electromagnetic jet powered by the BH’s spin energy. We present general relativistic radiative magnetohydrodynamic simulations of magnetically arrested systems covering a range of sub- to super-Eddington accretion rates. Using the numerical results from these simulations, we develop formulae to describe the magnetization, jet efficiency, and spin evolution of an accreting BH as a function of its spin and accretion rate. A BH with near-Eddington accretion experiences a mild degree of spin-down because of angular momentum loss through the jet, leading to an equilibrium spin of 0.8 rather than 1.0 at the Eddington limit. As the accretion rate increases above Eddington, the spin-down effect becomes progressively stronger, ultimately converging on previous predictions based on nonradiative simulations. In particular, spin evolution drives highly super-Eddington systems toward a BH spin near zero. The formulae developed in this letter may be applied to galaxy- and cosmological-scale simulations that include BHs. If magnetically arrested disk accretion is common among supermassive BHs, the present results have broad implications for active galactic nucleus feedback and cosmological spin evolution.

     
    more » « less
    Free, publicly-accessible full text available August 31, 2024
  3. Abstract

    Accretion of magnetized gas on compact astrophysical objects such as black holes (BHs) has been successfully modeled using general relativistic magnetohydrodynamic (GRMHD) simulations. These simulations have largely been performed in the Kerr metric, which describes the spacetime of a vacuum and stationary spinning BH in general relativity (GR). The simulations have revealed important clues to the physics of accretion flows and jets near the BH event horizon and have been used to interpret recent Event Horizon Telescope images of the supermassive BHs M87* and Sgr A*. The GRMHD simulations require the spacetime metric to be given in horizon-penetrating coordinates such that all metric coefficients are regular at the event horizon. Only a few metrics, notably the Kerr metric and its electrically charged spinning analog, the Kerr–Newman metric, are currently available in such coordinates. We report here horizon-penetrating forms of a large class of stationary, axisymmetric, spinning metrics. These can be used to carry out GRMHD simulations of accretion on spinning, nonvacuum BHs and non-BHs within GR, as well as accretion on spinning objects described by non-GR metric theories of gravity.

     
    more » « less
  4. ABSTRACT

    We study the linear stability of a planar interface separating two fluids in relative motion, focusing on the symmetric configuration where the two fluids have the same properties (density, temperature, magnetic field strength, and direction). We consider the most general case with arbitrary sound speed cs, Alfvén speed vA, and magnetic field orientation. For the instability associated with the fast mode, we find that the lower bound of unstable shear velocities is set by the requirement that the projection of the velocity on to the fluid-frame wavevector is larger than the projection of the Alfvén speed on to the same direction, i.e. shear should overcome the effect of magnetic tension. In the frame where the two fluids move in opposite directions with equal speed v, the upper bound of unstable velocities corresponds to an effective relativistic Mach number $M_{\rm re}\equiv v/v_{\rm {f}\perp }\sqrt{(1-v_{\rm {f}\perp }^2)/(1-v^2)} \cos \theta =\sqrt{2}$, where $v_{\rm {f}\perp }=[v_{\rm {A}}^2+c_{\rm s}^2(1-v_{\rm {A}}^2)]^{1/2}$ is the fast speed assuming a magnetic field perpendicular to the wavevector (here, all velocities are in units of the speed of light), and θ is the laboratory-frame angle between the flow velocity and the wavevector projection on to the shear interface. Our results have implications for shear flows in the magnetospheres of neutron stars and black holes – both for single objects and for merging binaries – where the Alfvén speed may approach the speed of light.

     
    more » « less
  5. Shock waves in plasma are usually dealt with using magnetohydrodynamics (MHD). Yet, MHD entails the assumption of a short mean free path, which is not fulfilled in a collisionless plasma. Recently, for pair plasmas, we devised a model allowing one to account for kinetic effects within a MHD-like formalism. Its relies on an estimate of the anisotropy generated when crossing the front, with a subsequent assessment of the stability of this anisotropy in the downstream. We solved our model for parallel, perpendicular and switch-on shocks. Here we bridge between all these cases by treating the problem of an arbitrarily, but coplanar, oriented magnetic field. Even though the formalism presented is valid for anisotropic upstream temperatures, only the case of a cold upstream is solved. We find extra solutions which are not part of the MHD catalogue, and a density jump that is notably less in the quasi-parallel, highly magnetized, regime. Given the complexity of the calculations, this work is mainly devoted to the presentation of the mathematical aspect of our model. A forthcoming article will be devoted to the physics of the shocks here defined. 
    more » « less
  6. Abstract An important parameter in the theory of hot accretion flows around black holes is δ , which describes the fraction of “viscously” dissipated energy in the accretion flow that goes directly into heating electrons. For a given mass accretion rate, the radiative efficiency of a hot accretion flow is determined by δ . Unfortunately, the value of δ is hard to determine from first principles. The recent Event Horizon Telescope Collaboration (EHTC) results on M87* and Sgr A* provide us with a different way of constraining δ . By combining the mass accretion rates in M87* and Sgr A* estimated by the EHTC with the measured bolometric luminosities of the two sources, we derive good constraints on the radiative efficiencies of the respective accretion flows. In parallel, we use a theoretical model of hot magnetically arrested disks (MADs) to calculate the expected radiative efficiency as a function of δ (and accretion rate). By comparing the EHTC-derived radiative efficiencies with the theoretical results from MAD models, we find that Sgr A* requires δ ≳ 0.3. A similar comparison in the case of M87* gives inconclusive results as there is still a large uncertainty in the accretion rate in this source. 
    more » « less
  7. ABSTRACT

    We present two general relativistic radiation magnetohydrodynamics (GRRMHD) simulations of magnetically arrested discs (MADs) around non-spinning (a* = 0) and spinning (a* = 0.9) supermassive black holes (BHs). In each simulation, the mass accretion rate is decreased with time such that we sample Eddington-scaled rates over the range $3 \gtrsim \dot{M}/\dot{M}_{\rm {Edd}}\gtrsim 0.3$. For the non-spinning BH model, the total and radiative efficiencies increase as the accretion rate decreases, varying over the range $\eta _{\rm {tot}}\sim 9\!-\!16{{\ \rm per\ cent}}$ and $\eta _{\rm {rad}}\sim 6{-}12{{\ \rm per\ cent}}$, respectively. This model shows very little jet activity. In contrast, the spinning BH model has a strong relativistic jet powered by spin energy extracted from the BH. The jet power declines with accretion rate such that $\eta _{\rm {jet}}\sim 18{-}39{{\ \rm per\ cent}}$ while the total and radiative efficiencies are $\eta _{\rm {tot}}\sim 64{-}100{{\ \rm per\ cent}}$ and $\eta _{\rm {rad}}\sim 45{-}79{{\ \rm per\ cent}}$, respectively. We confirm that mildly sub-Eddington discs can extract substantial power from a spinning BH, provided they are in the MAD state. The jet profile out to $100\, GM/c^2$ is roughly parabolic with a power-law index of k ≈ 0.43−0.53 during the sub-Eddington evolution. Both models show significant variability in the outgoing radiation which is likely associated with episodes of magnetic flux eruptions. The a* = 0.9 model shows semiregular variations with a period of $\sim 2000\, GM/c^3$ over the final $\sim 10\, 000\, GM/c^3$ of the simulation, which suggests that magnetic flux eruptions may be an important source of quasi-periodic variability. For the simulated accretion rates, the a* = 0 model is spinning up while the a* = 0.9 model is spinning down. Spinup–spindown equilibrium of the BH will likely be achieved at 0.5 < a*, eq < 0.6, assuming continuous accretion in the MAD state.

     
    more » « less
  8. ABSTRACT

    The Event Horizon Telescope (EHT) collaboration has produced the first resolved images of the supermassive black holes at the centre of our galaxy and at the centre of the elliptical galaxy M87. As both technology and analysis pipelines improve, it will soon become possible to produce spectral index maps of black hole accretion flows on event horizon scales. In this work, we predict spectral index maps of both M87* and Sgr A* by applying the general relativistic radiative transfer (GRRT) code ipole to a suite of general relativistic magnetohydrodynamic (GRMHD) simulations. We analytically show that the spectral index increases with increasing magnetic field strength, electron temperature, and optical depth. Consequently, spectral index maps grow more negative with increasing radius in almost all models, since all of these quantities tend to be maximized near the event horizon. Additionally, photon ring geodesics exhibit more positive spectral indices, since they sample the innermost regions of the accretion flow with the most extreme plasma conditions. Spectral index maps are sensitive to highly uncertain plasma heating prescriptions (the electron temperature and distribution function). However, if our understanding of these aspects of plasma physics can be tightened, even the spatially unresolved spectral index around 230 GHz can be used to discriminate between models. In particular, Standard and Normal Evolution (SANE) flows tend to exhibit more negative spectral indices than Magnetically Arrested Disc (MAD) flows due to differences in the characteristic magnetic field strength and temperature of emitting plasma.

     
    more » « less
  9. Abstract We present an in-depth analysis of the newly proposed correlation function in visibility space, between the E and B modes of linear polarization, hereafter the EB correlation, for a set of time-averaged general relativistic magnetohydrodynamical simulations compared with the phase map from different semianalytic models and the Event Horizon Telescope (EHT) 2017 data for M87*. We demonstrate that the phase map of time-averaged EB correlation contains novel information that might be linked to black hole (BH) spin, accretion state, and electron temperature. A detailed comparison with a semianalytic approach with different azimuthal expansion modes shows that to recover the morphology of real/imaginary part of the correlation function and its phase, we require higher orders of azimuthal modes. To extract the phase features, we use Zernike polynomial reconstruction developing an empirical metric to break degeneracies between models with different BH spins that are qualitatively similar. We use a set of geometrical ring models with various magnetic and velocity field morphologies, showing that both the image space and visibility-based EB -correlation morphologies in magnetically arrested disk  simulations can be explained with simple fluid and magnetic field geometries as used in ring models. Standard and normal evolutions by contrast are harder to model, demonstrating that the simple fluid and magnetic field geometries of ring models are not sufficient to describe them owing to higher Faraday rotation depths. A qualitative comparison with the EHT data demonstrates that some of the features in the phase of EB correlation might be well explained by the current models for BH spins and electron temperatures, while others require larger theoretical surveys. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024